Home
Class 12
MATHS
lim(x rarr0)(1)/(x^(3))int(0)^(x)(tag(1+...

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(tag(1+t))/(t^(1/2)+u)dt=?

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t))/(t^(4)+4)backslash dt

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

Find the value of Lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t(ln (1+t)))/(t^(4) + 4)dt

lim_(x rarr0)(x^(2)-1)/(x^(2))

lim_(x rarr0)(1-cos x)/(x^(2))

lim_(x rarr0)x sin((1)/(x^(2)))

lim_(x rarr0)(2^(x)-1)/(x)

lim_(x rarr0)(sec x-1)/(x^(2))

lim_(x rarr0)(1-x)^(1/x)=