Home
Class 11
MATHS
cos^(-1)(5)/(x)+cos^(-1)(12)/(x)=(pi)/(2...

cos^(-1)(5)/(x)+cos^(-1)(12)/(x)=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

cos^(-1)""(3)/(5) +cos ^(-1) "" (12)/(13) +cos ^(-1) "" (63)/(65)=(pi)/(2)

sin^(-1)(1/5)+cos^(-1)x=(pi)/(2)

If sec^(-1)(cos^(2)x-2cos x+3)+cos ec^(-1)(5^(cos ec^(2)y)+1)=(pi)/(2) Then sin^(2)x-cos^(2)y=

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

The sum of the maximum and the minimum values of 2(cos^(-1)x)^(2)-pi cos^(-1) x+(pi^(2))/(4) is

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is : (a) "cos"(pi)/(5) (b) "cos"(pi)/(4) (c) "cos"(pi)/(8) (d) "cos"(pi)/(12)

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

cos^(2)((pi)/(12))+cos^(2)((3pi)/(12))+cos^(2)((5pi)/(12))= …………

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)