Home
Class 11
MATHS
" Q.The value of "lim(n rarr oo)n[log(n+...

" Q.The value of "lim_(n rarr oo)n[log(n+1)-log n]" is- "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo) n[log(n+1)-logn] is

lim_(n rarr oo)2^(1/n)

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

The value of lim_(n rarr oo)((1)/(2^(n))) is

The value of lim_(n->oo) n^(1/n)

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

The value of lim_ (n rarr oo) (n + 1) / (n ^ (2)) - :( 1) / (n)

lim_(n rarr oo)(n+(-1)^(n))/(n)

Let a=n(a+(1)/(In(n))) and b=(n+(1)/(ln(n)))^(n). The value of lim_(n rarr oo)((a)/(b)) is equal to