Home
Class 12
MATHS
If aa n db are nonzero non-collinear ...

If `aa n db` are nonzero non-collinear vectors, then `[ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k` is equal to ` vec a+ vec b` b. ` vec axx vec b` c. ` vec a- vec b` d. ` vec bxx vec a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If aa n db are nonzero non-collinear vectors, then [ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k is equal to a. vec a+ vec b b. vec axx vec b c. vec a- vec b d. vec bxx vec a

If aa n db are nonzero non-collinear vectors, then [ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k is equal to a. vec axx vec b b. vec a+ vec b c. vec a- vec b d. vec bxx vec a

If aa n db are nonzero non-collinear vectors, then [ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k is equal to a. vec axx vec b b. vec a+ vec b c. vec a- vec b d. vec bxx vec a

If vec a and vec b are non-zero and non-collinear vectors, then vec ax vec b=[ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k vec adot vec b=( vec adot vec i)( vec adot hat i)( vec bdot hat j)+( vec adot hat j) ( vec bdot hat j) + ( vec adot hat k)( vec bdot hat k) If vec u= hat a-( hat adot hat b) hat b and hat v= hat ax hat b , then | vec v|=| vec u| If vec c= vec ax( vec ax vec b) , then vec c dot vec a=0

If vec a and vec b are non-zero and non-collinear vectors, then vec ax vec b=[ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k vec adot vec b=( vec adot vec i)( vec adot hat i)( vec bdot hat j)+( vec adot hat j) ( vec bdot hat j) + ( vec adot hat k)( vec bdot hat k) If vec u= hat a-( hat adot hat b) hat b and hat v= hat ax hat b , then | vec v|=| vec u| If vec c= vec ax( vec ax vec b) , then vec cdot vec a=0

If vec a ,\ vec b ,\ are non collinear vectors, then find the value of [\ vec a\ vec b\ hat i] hat i+[\ vec a\ vec b\ hat j] hat j+[ vec a\ vec b\ hat k] hat kdot

Prove that ( vec a.( vec bxx hat i)) hat i+( vec a.( vec bxx hat j)) hat j+( vec a.( vec bxx hat k)) hat k= vec axx vec b .

Prove that ( vec a.( vec bxx hat i)) hat i+( vec a.( vec bxx hat j)) hat j+( vec a.( vec bxx hat k)) hat k= vec axx vec b .

If vec a = hat i + hat j, vec b = hat i + hat k, vec c = hat k + hat i, a unit vector parallel to vec a + vec b + vec c