Home
Class 11
PHYSICS
The lengths of smooth & rough inclined p...

The lengths of smooth & rough inclined planes of inclination `45^(@)` is same Times of sliding of a body on two surface `t_(1)t_(2)` and `mu =0.75` then `t_(1):t_(2)=` .

A

`2:1`

B

`2:3`

C

`1:2`

D

`3:2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the times taken by a body to slide down a smooth inclined plane (t1) and a rough inclined plane (t2), given that the angle of inclination is 45 degrees and the coefficient of friction (μ) is 0.75. ### Step-by-Step Solution: 1. **Identify the accelerations on the inclined planes**: - For the smooth inclined plane, the only force acting along the incline is the component of gravitational force. Thus, the acceleration (a1) is given by: \[ a_1 = g \sin \theta \] - For the rough inclined plane, the frictional force opposes the motion. The acceleration (a2) is given by: \[ a_2 = g \sin \theta - \mu g \cos \theta \] 2. **Substituting the angle**: - Since the angle of inclination θ is 45 degrees, we have: \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos 45^\circ = \frac{1}{\sqrt{2}} \] - Therefore, we can rewrite the accelerations: \[ a_1 = g \cdot \frac{1}{\sqrt{2}} = \frac{g}{\sqrt{2}} \] \[ a_2 = g \cdot \frac{1}{\sqrt{2}} - 0.75 \cdot g \cdot \frac{1}{\sqrt{2}} = g \cdot \frac{1}{\sqrt{2}} \cdot (1 - 0.75) = g \cdot \frac{1}{\sqrt{2}} \cdot 0.25 = \frac{g}{4\sqrt{2}} \] 3. **Using the equation of motion to find time**: - The time taken to slide down an incline can be found using the equation: \[ s = ut + \frac{1}{2} a t^2 \] - Since the initial velocity (u) is 0, we can simplify this to: \[ L = \frac{1}{2} a t^2 \implies t = \sqrt{\frac{2L}{a}} \] - For the smooth incline: \[ t_1 = \sqrt{\frac{2L}{a_1}} = \sqrt{\frac{2L}{\frac{g}{\sqrt{2}}}} = \sqrt{\frac{2L \sqrt{2}}{g}} = \frac{\sqrt{4L}}{\sqrt{g}} = \frac{2\sqrt{L}}{\sqrt{g}} \] - For the rough incline: \[ t_2 = \sqrt{\frac{2L}{a_2}} = \sqrt{\frac{2L}{\frac{g}{4\sqrt{2}}}} = \sqrt{\frac{8L}{g}} = \frac{2\sqrt{2L}}{\sqrt{g}} \] 4. **Finding the ratio of times**: - Now, we can find the ratio \( \frac{t_1}{t_2} \): \[ \frac{t_1}{t_2} = \frac{\frac{2\sqrt{L}}{\sqrt{g}}}{\frac{2\sqrt{2L}}{\sqrt{g}}} = \frac{\sqrt{L}}{\sqrt{2L}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2} \] 5. **Final Answer**: - Thus, the ratio \( t_1 : t_2 \) is: \[ t_1 : t_2 = 1 : 2 \]

To solve the problem, we need to find the ratio of the times taken by a body to slide down a smooth inclined plane (t1) and a rough inclined plane (t2), given that the angle of inclination is 45 degrees and the coefficient of friction (μ) is 0.75. ### Step-by-Step Solution: 1. **Identify the accelerations on the inclined planes**: - For the smooth inclined plane, the only force acting along the incline is the component of gravitational force. Thus, the acceleration (a1) is given by: \[ a_1 = g \sin \theta ...
Promotional Banner

Topper's Solved these Questions

  • NEWTONS LAWS OF MOTION

    NARAYNA|Exercise LEVEL -II (C.W)|71 Videos
  • NEWTONS LAWS OF MOTION

    NARAYNA|Exercise LEVEL -III|31 Videos
  • NEWTONS LAWS OF MOTION

    NARAYNA|Exercise C.U.Q|73 Videos
  • MOTION IN A STRAIGHT LINE

    NARAYNA|Exercise Level 2 H.W|29 Videos
  • OSCILLATIONS

    NARAYNA|Exercise EXERCISE - IV|41 Videos

Similar Questions

Explore conceptually related problems

The lengths of smooth and rough inclined planes of inclination 45^(deg) is same.Times of sliding of a body on two surfaces are t_(1),t_(2)and mu=0.75

(a) A block slides down an incline of angle 45^(@) with an acceleration (g)/(2 sqrt(2)) . Find the friction coefficient. (b) A block slides down at 45^(@) inclined plane in twice the time it takes to slide down a smooth 45^(@) incline. What is friction co-efficient between the block and the incline? ( c) A block slides down on a rough inclined plane of inclination 30^(@) with constant velocity. If this block is projected up the plane with a velocity of 10 m//s , then at what distance along the inclined plane , the block will come to rest? (d) A body is launched up on a rough inclined plane of inclination theta . If time of ascent is half of time of descent, find the friction coefficient.

A block released from rest from the tope of a smooth inclined plane of angle of inclination theta_(1) = 30^(@) reaches the bottom in time t_(1) . The same block, released from rest from the top of another smooth inclined plane of angle of inclination theta_(2) = 45^(@) reaches the bottom in time t_(2) . Time t_(1) and t_(2) are related as ( Assume that the initial heights of blocks in the two cases are equal ).

An object is placed on the surface of a smooth inclined plane of inclination . It takes time t to reach the bottom of the inclined plane. If the same object is allowed to slide down rough inclined plane of same inclination , it takes time nt to reach the bottom where n is a number greater than 1. The coefficient of friction  is given by -

A body of mass 10 kg is lying on a rough inclined plane of inclination 37^(@) and mu = 1//2 , the minimum force required to pull the body up the plane is

A block released from rest from the top of a smooth inclined plane of inclination 45^(@) takes time 't' to reach the bottom . The same block released from rest , from top of a rough inclined plane of same inclination , takes time '2t' to reach the bottom , coefficient of friction is :

NARAYNA-NEWTONS LAWS OF MOTION-LEVEL -I (C.W)
  1. The coefficients of static and dynamic friction are 0.7 and 0.4 The mi...

    Text Solution

    |

  2. The coefficients of static friction between contact surface of two bod...

    Text Solution

    |

  3. Brakes are applied to car moving with disengaged engine, bringing it t...

    Text Solution

    |

  4. A book of weight 20N is pressed between two hands and each hand exerts...

    Text Solution

    |

  5. A car running with a velocity 72 kmph on a level road is stoped after ...

    Text Solution

    |

  6. In the above problem car got a stopping distance of 80m on cement road...

    Text Solution

    |

  7. A 10 kg mass is resting on a horizontal surface and horizontal force o...

    Text Solution

    |

  8. A block of mass 20kg is pushed with a horizontal force of 90N. It the ...

    Text Solution

    |

  9. A force of 150N produces an acceleration of 2ms^(-2) in a body and a f...

    Text Solution

    |

  10. A heavy uniform chain lies on horizontal table top. If the coefficient...

    Text Solution

    |

  11. The angle of inclination of an inclined plane is 60^(@). Coefficient o...

    Text Solution

    |

  12. The angle of inclination of an inclined plane is 60^(@). Coefficient o...

    Text Solution

    |

  13. The angle of inclination of an inclined plane is 60^(@). Coefficient o...

    Text Solution

    |

  14. The angle of inclination of an inclined plane is 60^(@). Coefficient o...

    Text Solution

    |

  15. When a body slides down an inclined plane with coefficient of friction...

    Text Solution

    |

  16. A brick of mass 2kg begins to slide down on a plane inclined at an ang...

    Text Solution

    |

  17. The lengths of smooth & rough inclined planes of inclination 45^(@) is...

    Text Solution

    |

  18. A block of weight 200N is pulled along a rough horizontal surface at c...

    Text Solution

    |

  19. The centripetal force required by a 1000 kg car that takes a turn of r...

    Text Solution

    |

  20. A stone of mass 0.5kg is attached to a string of length 2m and is whir...

    Text Solution

    |