Home
Class 11
PHYSICS
The unit vector perpendicular to vec A =...

The unit vector perpendicular to `vec A = 2 hat i + 3 hat j + hat k` and ` vec B = hat i - hat j + hat k` is

A

`(4hati-hatj-5hatk)/(sqrt(42))`

B

`(4hati-hatj+5hatk)/(sqrt(42))`

C

`(4hati+hatj+5hatk)/(sqrt(42))`

D

`(4hati+hatj-5hatk)/(sqrt(42))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to the given vectors \( \vec{A} = 2 \hat{i} + 3 \hat{j} + \hat{k} \) and \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Calculate the Cross Product of Vectors A and B The cross product \( \vec{A} \times \vec{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of vectors \( \vec{A} \) and \( \vec{B} \). \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 1 & -1 & 1 \end{vmatrix} \] ### Step 2: Calculate the Determinant Now we will calculate the determinant using the cofactor expansion: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} = (3)(1) - (1)(-1) = 3 + 1 = 4 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 2 - 1 = 1 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (3)(1) = -2 - 3 = -5 \] Putting it all together, we have: \[ \vec{A} \times \vec{B} = 4 \hat{i} - 1 \hat{j} - 5 \hat{k} \] ### Step 3: Find the Magnitude of the Cross Product Now we will find the magnitude of the vector \( \vec{A} \times \vec{B} \): \[ |\vec{A} \times \vec{B}| = \sqrt{(4)^2 + (-1)^2 + (-5)^2} = \sqrt{16 + 1 + 25} = \sqrt{42} \] ### Step 4: Calculate the Unit Vector The unit vector \( \hat{n} \) in the direction of \( \vec{A} \times \vec{B} \) is given by: \[ \hat{n} = \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{4 \hat{i} - 1 \hat{j} - 5 \hat{k}}{\sqrt{42}} \] ### Final Answer Thus, the unit vector perpendicular to \( \vec{A} \) and \( \vec{B} \) is: \[ \hat{n} = \frac{4}{\sqrt{42}} \hat{i} - \frac{1}{\sqrt{42}} \hat{j} - \frac{5}{\sqrt{42}} \hat{k} \]

To find the unit vector that is perpendicular to the given vectors \( \vec{A} = 2 \hat{i} + 3 \hat{j} + \hat{k} \) and \( \vec{B} = \hat{i} - \hat{j} + \hat{k} \), we will follow these steps: ### Step 1: Calculate the Cross Product of Vectors A and B The cross product \( \vec{A} \times \vec{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of vectors \( \vec{A} \) and \( \vec{B} \). \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ ...
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF PARTICLES

    NARAYNA|Exercise Level-III|66 Videos
  • SYSTEM OF PARTICLES

    NARAYNA|Exercise NCERT based questions|15 Videos
  • SYSTEM OF PARTICLES

    NARAYNA|Exercise Level-1(C.W.)|64 Videos
  • PHYSICAL WORLD

    NARAYNA|Exercise C.U.Q|10 Videos
  • SYSTEM OF PARTICLES AND ROTATIONAL MOTION

    NARAYNA|Exercise EXERCISE - IV|39 Videos

Similar Questions

Explore conceptually related problems

Determine a unit vector whoch is perpendicular to both vec A =2 hat I + hat j + hat k and vec B = hat I - hat j +2 hat k .

Find a unit vector parallel to the resultant of vectors vec A = 3 hat I + 3 hat j - 2 hat k and vec B= hat i- 5 hat j + hat k .

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

Which one of the following is the unit vector perpendicular to both vec(a)=-hat(i)+hat(j)+hat(k) and vec(b)=hat(i)-hat(j)+hat(k) ?

Show that vectors vec A =2 hat I -3 hat j - hat k and vec vec B =- 6 hat I + 9 hat j + 3 hat k are paarallel.

Find a unit vector perpendicular to the lane containing the vectors vec a=2hat i+hat j+hat k and vec b=hat i+2hat j+hat k

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

For what value of lambda are the vector vec a and vec b perpendicular to each other? where: vec a=lambda hat i+2 hat j+ hat k and vec b=4 hat i-9 hat j+2 hat k vec a=lambda hat i+2 hat j+ hat k and vec b=5 hat i-9 hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k and vec b=3 hat i+2 hat j-lambda hat k vec a=lambda hat i+3 hat j+2 hat k and vec b= hat i- hat j+3 hat k

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

Let vec a = hat i + hat j + hat k, vec b = hat i + 4 hat j - hat k, vec c = hat i + hat j + 2 hat k and hat s be a the unit vector the magnitude of the vector (vec a .vec s)(vec b xx vec c) + (vec b. vec s)(vec c xx vec a) + ( vec c.vec s)(vec a xx vec b) is equal to (A) 1 (B) 2 (C) 3 (D) 4

NARAYNA-SYSTEM OF PARTICLES-Level-II(C.W.)
  1. Two particles of equal masses have velocities vec v1 = 4 hat i and vec...

    Text Solution

    |

  2. Two particles of masses p and q (p gt q) are separated by a distance d...

    Text Solution

    |

  3. The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and...

    Text Solution

    |

  4. An electron is moving with speed 2xx10^5 m//s along the positive x-dir...

    Text Solution

    |

  5. A particle of mass 80 units is moving with a uniform speed v=4 sqrt 2 ...

    Text Solution

    |

  6. The linear and angular velocities of a body in rotatory motion are 3 m...

    Text Solution

    |

  7. A stationary wheel starts rotating about its own axis at uniform rate ...

    Text Solution

    |

  8. A circular disc is rotating about its own axis at constant angular acc...

    Text Solution

    |

  9. A circular disc is rotating about its own axis at a uniform angular ve...

    Text Solution

    |

  10. Average torque on a projectile of mass m (initial speed u and angle of...

    Text Solution

    |

  11. A metal rod of uniform thickness and of length 1m is suspended at its ...

    Text Solution

    |

  12. A metallic rod of mass 20kg and of uniform thickness rests against a w...

    Text Solution

    |

  13. A roller of mass 300kg and of radius 50cm lying on horizontal floor is...

    Text Solution

    |

  14. A thin rod of mass M and length L is bent into a circular ring. The ex...

    Text Solution

    |

  15. Two identical circular plates each of mass 0.1 kg and radius 10cm are ...

    Text Solution

    |

  16. A wheel starting from rest is uniformly accelerate at 4rad/s^2 for 10 ...

    Text Solution

    |

  17. Two spheres each of mass M and radius R//2 are connected at their cent...

    Text Solution

    |

  18. Moment of inertia of a thin circular plate of mass M, radius R about a...

    Text Solution

    |

  19. The mass of a thin circular plate is M and its radius is R. About an a...

    Text Solution

    |

  20. In a rectangle ABCD (BC = 2AB). The moment of inertia is maximum along...

    Text Solution

    |