Home
Class 12
MATHS
" The value of "i^(n)+i^(-n)," for "i=sq...

" The value of "i^(n)+i^(-n)," for "i=sqrt(-1)" and "n in I" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)),i=sqrt(-1) is

if i=sqrt(-)1, the number of values of i^(n)+i^(-n) for different n varepsilon I, is:

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

The value of sum_(n=1)^(13)(i^n+i^(n+1)), " where "i = sqrt(-1) is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is