Home
Class 9
MATHS
" 9."p(x)=7x^(2)-4sqrt(2)x-6,g(x)=x-sqrt...

" 9."p(x)=7x^(2)-4sqrt(2)x-6,g(x)=x-sqrt(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=7x^(2)-4sqrt(2)x-6,g(x)=x-sqrt(2)

7sqrt(2)x^(2)-10x-4sqrt(2)

sqrt(2)x^(2)+9x+4sqrt(2)

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2sqrt(2)x^(2)+5x+sqrt(2),g(x)=x+sqrt(2)

If sqrt(2) is a zero of p(x)=6x^(3)+sqrt(2)x^(2)-10x-4sqrt(2), find the remaining zeros

lim_(x rarr sqrt(2))(x^(2)-3sqrt(2)x+4)/(x^(3)+7x-9sqrt(2))

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

p(x)=x^2-7sqrt(7)x+3 then p(7sqrt(7) =?

Solve sqrt(x^(2)+4x-21)+sqrt(x^(2)-x-6)=sqrt(6x^(2)-5x-39)

Verify the division algorithm for the polynomials p(x)=2x^(4)-6x^(3)+2x^(2)-x+2andg(x)=x+2 . p(x)=2x^(3)-7x^(2)+9x-13,g(x)=x-3 .