Home
Class 12
MATHS
lim(x rarr oo)[(sin x)/(x)]=0...

lim_(x rarr oo)[(sin x)/(x)]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx is equal to

If a=lim_(x rarr oo)(sin x)/(x)&b=lim_(x rarr0)(sin x)/(x) Then int_(a)^(b)(log(1+x))/(1+x^(2))dx is equal to

lim_(x rarr oo)(sin x)/(x)+lim_(x rarr oo)(log x)/(x) equals

If a=lim_(x rarr0)(1-cos x)/(x^(2)),b=lim_(x rarr0)(sin3x)/(x),c=lim_(x rarr oo)(sin x)/(x) then find the value of (2a+b+c)

lim_(x rarr oo)((x+sin x)/(x)) equals to

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

lim_(x rarr0)(sin x)/(x+5)

[lim_(x rarr0)(sin x)/(x)]

lim_(x rarr0)(sin x)/(pi-x)

lim_(x rarr0)(sin x)/(x)=1