Home
Class 12
MATHS
[" 16.If "z(1),z(2)" and "z(1),z(4)" are...

[" 16.If "z_(1),z_(2)" and "z_(1),z_(4)" are two pairs of conjugate complex "],[" numbers,then "arg((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))" equals "],[[" (a) "0," (b) "pi/2],[" (c) "3 pi/2," (d) "pi]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1), z_(2) and z_(3), z_(4) are two pairs of conjugate complex numbers, then find arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3))) .

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3))) equals

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,prove that arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=0

If z^(1),z^(2) and z^(3),z^(4) are two pairs of conjugate complex number, then find arg 2((z_(1))/(z_(4)))+ ((z_(2))/(z_(3))).

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,hen find the value of arg(z_(1)/z_(4))+arg(z_(2)/z_(3))*a

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is