Home
Class 12
MATHS
int log(sqrt(1-x)+sqrt(1+x))dx...

int log(sqrt(1-x)+sqrt(1+x))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int ln(sqrt(1+x)+sqrt(1-x))dx

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

int_(, then )^( If )log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+B sin^(-1)x+C

int_(0)^(1)log(sqrt(1-x)+sqrt(1+x))dx equals:

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

int_0^1 log(sqrt(1+x)+sqrt(1-x))dx= (A) 1/2(log2-pi/2+1) (B) 1/2(log2+pi/2+1) (C) 1/2(log2+pi/2-1) (D) none of these

int_0^1 log(sqrt(1+x)+sqrt(1-x))dx= (A) 1/2(log2-pi/2+1) (B) 1/2(log2+pi/2+1) (C) 1/2(log2+pi/2-1) (D) none of these

Find int_-1^1 ln(sqrt(1-x)+sqrt(1+x))dx

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=