Home
Class 11
MATHS
" (viii) "f(x)=sin^(2)x+cos^(4)x...

" (viii) "f(x)=sin^(2)x+cos^(4)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Define f: R to R by f(x) = (sin^(2)x + cos^(4)x)/(cos^(2)x + sin^(4)x) , then the range of f consists of exactly ………….. Element(s).

The range of f(x)=sin^(2)x+cos^(4)x

Show that the range of the function f(x ) = (sin^(2) x + cos^(4) x)/( cos^(2) x+ sin^(4) x ) is a singleton set.

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

The range of f(x)=sin^(2)x+cos^(4)x is (1)[(1)/(2),1](2)[(3)/(4),1](3)[0,1](4)[0,(1)/(4)]

If fundamental period of the functions f(x)=sin^(2)x+cos^(4)x and g(x)=cos(sin2x)+cos(cos2x) are lambda_(1) and lambda_(2) respectively then (lambda_(1))/(lambda_(2))=

If f (x) =(cos^(2) x+ sin ^(4) x )/(sin^(2) x + cos^(4) x) AA x in R then show that f (2012) = 1.

The function f(x)=sin^(4)x+cos^(4)x increasing if

If f(x) = |{:(sin^(2)x+cos^(4)x, ln cos x,(1)/(1+(tanx)^(sqrt(2)))),(pi,pi^(2),pi^(4)),((7)/(16),-(1)/(2) ln2,(1)/(4)):}| the value of int_(0)^(pi//2)f(x) dx is