Home
Class 11
MATHS
" The value of "lim(x rarr0)(sqrt(1+x)-s...

" The value of "lim_(x rarr0)(sqrt(1+x)-sqrt(1+x^(2)))/(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(x)

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)=?

lim_(x rarr0)sqrt(1-sqrt(1-x^(2)))

lim_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

Lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)

The value of lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr0)(sqrt(1+sin x)-sqrt(1-sin x))/(x)

lim_(x rarr0)(3sqrt(1+x)3sqrt(-1-x))/(x)

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))