Home
Class 12
MATHS
f (x) is an even periodic function with ...

f (x) is an even periodic function with period 10 In `[0,5], f (x) = {{:(2x, 0le x lt2),(3x ^(2)-8,2 le x lt 4),(10x, 4 le x le 5):}.` Then:

A

`f (-4) =40`

B

`(f(-13) -f(11))/(f (13) +f(-11))=17/21`

C

`f (5)` is not defined

D

Range of `f (x)` is `[0,50]`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise COMPREHENSION TYPE PROBLEMS|15 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise MATCHING TYPE PROBLEMS|1 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK)|Exercise SUBJECTIVE TYPE PROBLEMS|34 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):}

Knowledge Check

  • An even periodic functin f : R to R with period 4 is such that f (x)= [{:(max. (|x|"," x ^(2)),, 0 le x lt 1),( x,, 1 le x le 2):} The number of solution of f (x) | 3 sin x| for x in (-6, 6) are :

    A
    5
    B
    3
    C
    7
    D
    9
  • If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

    A
    It has a relative minimum at x = 1
    B
    It has a relative maximum at x =1
    C
    It is not continuous at x = 1
    D
    None of these
  • An even periodic functin f : R to R with period 4 is such that f (x)= [{:(max. (|x|"," x ^(2)),, 0 le x lt 1),( x,, 1 le x le 2):} The value of {f (5.12)} (where {.} denotes fractional part function), is :

    A
    `{f(3.26)}`
    B
    `{f (7.88)}`
    C
    `{f(2.12)}`
    D
    `{f (5.88)}`
  • Similar Questions

    Explore conceptually related problems

    If f(x) = {{:(3x^(2) + 12 x -1, -1 le x le 2),(37-x, 2 lt x le 3):} , then

    If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2):} then,

    The points of discontinuity of the function f (x) = {{:(3x + 1"," ,0 le x lt2),(4x - 1"," ,2 lt x le 6),(5x + 2",", 6 lt x le 10 ):} are:

    If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

    If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is