Home
Class 12
MATHS
lim(x->0) (cos(tanx)-cosx)/x^4=...

`lim_(x->0) (cos(tanx)-cosx)/x^4=`

A

`1/6`

B

`-1/3`

C

`-1/6`

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

lim_(x rarr0)(cos(tan x)-cos x)/(x^(4)) is equal to :

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_ (x rarr0) (cos (tan x) -cos x) / (x ^ (4)) =

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

lim_(x->0)(1/x)^(1-cosx)

lim_(xrarr0)(tanx-sinx)/(x^3)=

lim_(x rarr 0) (2(1-cosx))/x^2