Home
Class 12
MATHS
Let a= lim(x->0)ln(cos2x)/(3x^2), b=lim...

Let `a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx`

A

`a lt b lt c`

B

`b lt c lt a`

C

`a lt c lt b`

D

`b lt a lt c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

a=lim_(x rarr0)(ln(cos2x))/(3x^(2)),b=lim_(x rarr0)(sin^(2)2x)/(x(1-e^(x))),c=lim_(x rarr1)(sqrt(x)-x)/(ln x)

lim_(x->0)(e^(2x)-1)/(3x)

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

lim_(x->0) (1-cos x)/(sin^2 x)

lim_(x rarr0)(sin^(2)x(1-cos2x))/(x^(2))

If a=lim_(x rarr0)(1-cos x)/(x^(2)),b=lim_(x rarr0)(sin3x)/(x),c=lim_(x rarr oo)(sin x)/(x) then find the value of (2a+b+c)

lim_(x rarr0)((ln(1+x^(2)+x^(4)))/((e^(x)-1)x)

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x rarr0)((1-cos2x)sin5x)/(x^(2)sin3x)

lim_(x rarr0)(sin(6x^(2)))/(ln cos(2x^(2)-x))