Home
Class 12
MATHS
If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and...

If `f(x)=cot^(-1) ((3x-x^3)/(1-3x^2))` and `g(x)=cos^(-1)((1-x^2)/(1+x^2))`, then `lim_(x->a) (f(x)-f(a))/(g(x)-g(a))`, `0ltalt1/2` is

A

`(3)/(2 (1+a^(2)))`

B

`3/2`

C

`(-3)/(2 (1+a^(2)))`

D

`-3/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If quad tan^(-1)(3x-x^(3))/(1-3x^(2)),g(x)=cos^(-1)(1-x^(2))/(1+x^(2)) and 0

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4), and h(x)=-(2(2x+1))/(x^(2)+x-12) then lim_(x rarr3)[f(x)+g(x)+h(x)] is (a) -2(b)-1 (c) -(2)/(7) (d) 0