Home
Class 12
MATHS
lim (xto0)(((1+ x )^(2/x))/(e ^(2)))^((4...

`lim _(xto0)(((1+ x )^(2/x))/(e ^(2)))^((4)/(sin x))` is :

A

`e ^(4)`

B

`e ^(-4)`

C

`e ^(8)`

D

`e ^(-8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \left( \frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} \), we can follow these steps: ### Step 1: Rewrite the Limit Let \( L = \lim_{x \to 0} \left( \frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} \). ### Step 2: Take the Natural Logarithm Taking the natural logarithm of both sides gives: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \ln \left( \frac{(1+x)^{\frac{2}{x}}}{e^2} \right) \] Using the property of logarithms, we can separate the terms: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2}{x} \ln(1+x) - \ln(e^2) \right) \] Since \( \ln(e^2) = 2 \), we have: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2}{x} \ln(1+x) - 2 \right) \] ### Step 3: Simplify the Expression This can be rewritten as: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2 \ln(1+x) - 2x}{x} \right) \] ### Step 4: Apply L'Hôpital's Rule As \( x \to 0 \), both the numerator and denominator approach 0, allowing us to apply L'Hôpital's Rule: \[ \ln L = 8 \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} \] ### Step 5: Differentiate Numerator and Denominator Differentiate the numerator and denominator: - The derivative of \( \ln(1+x) \) is \( \frac{1}{1+x} \). - The derivative of \( x \) is \( 1 \). Applying L'Hôpital's Rule: \[ \ln L = 8 \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} \] This simplifies to: \[ \ln L = 8 \lim_{x \to 0} \frac{-x}{2x(1+x)} = -4 \lim_{x \to 0} \frac{1}{1+x} = -4 \] ### Step 6: Solve for L Now we have: \[ \ln L = -4 \implies L = e^{-4} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} = e^{-4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

Slove lim_(xto0)((1+x)^(1//x)-e)/x

The polynomial of least degree such that lim_(xto0)(1+(x^(2)+f(x))/(x^(2)))^(1//x)=e^(2) is

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).