Home
Class 12
MATHS
lim (xto0) (sin (pi cos ^(2) (tan (sin x...

`lim _(xto0) (sin (pi cos ^(2) (tan (sin x ))))/(x ^(2))=`

A

`pi`

B

`pi/4`

C

`pi/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2(\tan(\sin x)))}{x^2}, \] we will proceed step by step. ### Step 1: Analyze the limit As \( x \to 0 \), we notice that both the numerator and denominator approach 0. Specifically, \(\sin(0) = 0\) and \(x^2 \to 0\). This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Rewrite the expression We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2(\tan(\sin x)))}{x^2}. \] ### Step 3: Use Taylor series expansion For small values of \(x\), we can use the Taylor series expansion for \(\sin x\) and \(\tan x\): 1. \(\sin x \approx x\) 2. \(\tan x \approx x\) Thus, we have: \[ \tan(\sin x) \approx \tan(x) \approx x. \] ### Step 4: Substitute in the limit Now, substituting \(\tan(\sin x) \approx x\) into \(\cos^2(\tan(\sin x))\): \[ \cos^2(\tan(\sin x)) \approx \cos^2(x). \] Using the Taylor expansion for \(\cos x\): \[ \cos x \approx 1 - \frac{x^2}{2} \implies \cos^2(x) \approx \left(1 - \frac{x^2}{2}\right)^2 \approx 1 - x^2 + O(x^4). \] ### Step 5: Substitute back into the limit Now we substitute this back into our limit: \[ \sin(\pi \cos^2(\tan(\sin x))) \approx \sin(\pi (1 - x^2)). \] Using the identity \(\sin(\pi - x) = \sin x\): \[ \sin(\pi (1 - x^2)) = \sin(\pi - \pi x^2) = \sin(\pi x^2). \] ### Step 6: Use the small angle approximation For small angles, \(\sin y \approx y\): \[ \sin(\pi x^2) \approx \pi x^2. \] ### Step 7: Substitute into the limit Now substituting this back into our limit: \[ \lim_{x \to 0} \frac{\pi x^2}{x^2} = \pi. \] ### Conclusion Thus, the final result is: \[ \lim_{x \to 0} \frac{\sin(\pi \cos^2(\tan(\sin x)))}{x^2} = \pi. \] ### Final Answer The limit evaluates to: \[ \pi. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_ (x rarr oo) (sin (pi cos ^ (2) (tan (sin x)))) / (x ^ (2)) =

lim_(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

lim_ (x rarr0) (cos ((pi) / (2cos x))) / (sin (sin x ^ (2)))

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

What is the value of a+b, if lim _(xto 0) (sin (ax) -ln (e ^(x)cos x))/(x sin (bx))=1/2 ?

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto0)(sin(picos^(2)x))/(x^(2)) is equal to

lim_ (x rarr (pi) / (2)) tan x log sin x

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).