Home
Class 12
MATHS
lim(x->pi/2) sinx/(co^-1[1/4(3sinx-sin3x...

`lim_(x->pi/2) sinx/(co^-1[1/4(3sinx-sin3x)])` where `[]` denotes greatest integer function id:

A

`2/pi`

B

1

C

`4/pi`

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(pi)/(2))(sin x)/(co^(-1)[(1)/(4)(3sin x-sin3x)]) where [] denotes greatest integer function id:

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)