Home
Class 12
MATHS
If lim (xto oo) (sqrt( x ^(2) -x+1)-ax ...

If `lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0,` then for `k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =`

A

a

B

`-a`

C

2a

D

b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to \infty} \left( \sqrt{x^2 - x + 1} - ax - b \right) = 0 \] ### Step 1: Simplify the Expression We start with the expression inside the limit: \[ \sqrt{x^2 - x + 1} - ax - b \] As \( x \to \infty \), we can approximate the square root: \[ \sqrt{x^2 - x + 1} \approx \sqrt{x^2} = x \] Thus, we rewrite the expression: \[ \sqrt{x^2 - x + 1} \approx x \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} \approx x \left(1 - \frac{1}{2x} + O\left(\frac{1}{x^2}\right)\right) = x - \frac{1}{2} + O\left(\frac{1}{x}\right) \] ### Step 2: Set Up the Limit Now we substitute this approximation back into our limit: \[ \lim_{x \to \infty} \left( \left(x - \frac{1}{2} + O\left(\frac{1}{x}\right)\right) - ax - b \right) \] This simplifies to: \[ \lim_{x \to \infty} \left( (1 - a)x - \frac{1}{2} - b + O\left(\frac{1}{x}\right) \right) \] ### Step 3: Determine Conditions for the Limit to Equal Zero For the limit to equal zero, the coefficient of \( x \) must be zero: \[ 1 - a = 0 \implies a = 1 \] Also, the constant term must equal zero: \[ -\frac{1}{2} - b = 0 \implies b = -\frac{1}{2} \] ### Step 4: Substitute Values of \( a \) and \( b \) Now we have \( a = 1 \) and \( b = -\frac{1}{2} \). ### Step 5: Evaluate the Second Limit Next, we need to evaluate: \[ \lim_{x \to \infty} \sec^{2n}(k! \pi b) \] Substituting \( b = -\frac{1}{2} \): \[ k! \pi b = k! \pi \left(-\frac{1}{2}\right) = -\frac{k! \pi}{2} \] Now, we find: \[ \sec^{2n}\left(-\frac{k! \pi}{2}\right) = \sec^{2n}\left(\frac{k! \pi}{2}\right) \] ### Step 6: Analyze the Value of \( \sec^{2n} \) The secant function has periodic properties. Specifically, for \( k \geq 2 \): - If \( k! \) is even, \( \sec\left(\frac{k! \pi}{2}\right) = \sec(0) = 1 \). - If \( k! \) is odd, \( \sec\left(\frac{k! \pi}{2}\right) \) will be undefined. Since \( k! \) is even for all \( k \geq 2 \): \[ \sec^{2n}\left(-\frac{k! \pi}{2}\right) = 1^{2n} = 1 \] ### Final Answer Thus, we conclude: \[ \lim_{x \to \infty} \sec^{2n}(k! \pi b) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

lim_ (x rarr-oo) x (sqrt (x ^ (2) + k) -x)

If lim_(x to oo) (sqrt(x^(2) -x+1) -ax)=b , then the ordered pair (a, b) is :

lim_(xto oo)(x/(1+x))^(x) is

lim_ (x rarr oo) (sqrt (x ^ (2) + ax + b) -x) =

lim_(x to oo)(sqrt(x^2-x+1)-ax)=b Find the value of 2(a+b) is

If lim _( x to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

If lim_(xto oo)((x^(2)+1)/(x+1)-ax-b)=oo find a and b.

If lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0 then the value of a and b are given by: