Home
Class 12
MATHS
The value of underset(x + (pi)/(2))(lim)...

The value of `underset(x + (pi)/(2))(lim) ({1 - tan (x)/(2)}{1-"sin"x})/({1 + tan (X)/(2)}(pi - 2x)^(3))` equals

A

not exist

B

`1/8`

C

`1/16`

D

`1/32`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x + (pi)/(2)) ({1 - tan (x)/(2)}{1-"sin"x})/({1 + tan (X)/(2)}(pi - 2x)^(3)) equals

The value of lim_(x rarr(pi)/(2))({1-(tan x)/(2)}{1-sin x})/({1+(tan x)/(2)}(x-2x)^(3)) equals

lim_ (x rarr (pi) / (2)) ((1-tan ((x) / (2))) (1-sin x)) / ((1 + tan ((x) / (2))) ((pi-2x) ^ (3)))

lim_ (x rarr (pi) / (2)) ([1-tan ((x) / (2))] [1-sin x]) / ([1 + tan ((x) / (2))] [pi-2x] ^ (3))

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

lim_(x rarr((pi)/(2)))(1-sin x)tan x=

underset( x rarr (3pi)/( 4))("Lim")(1+ root( 3)(tan x))/( 1-2 cos^(2) x )

lim_ (x rarr (pi) / (2)) {(1-sin x) tan x}