Home
Class 12
MATHS
Consider the function f (x)={{:(max (x, ...

Consider the function `f (x)={{:(max (x, (1)/(x))",", If x ne0),(min (x, (1)/(x)),),(1"," , if x=0):},` then` lim _(xto 0^(-)) {f(x)} + lim _(xto 1 ^(-)) {f (x)}+ lim _(x to 1 ^(-)) [f (x)]=`
(where {.} denotes fraction part function and [.] denotes greatest integer function)

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional part function and [.] denotes greatest integer function and sgn(x) is a signum function)

If lim_(x to a) f(x)=lim_(x to a) [f(x)] and f(x) is non-constant continuous function, where [.] denotes the greatest integer function, then

Consider the function f(x)={(max(x,(1)/(x)))/(min(x,(1)/(x))),quad if x!=0 and 1,quad if x=0 then lim_(x rarr0){f(x)}+lim_(x rarr1){f(x)},lim_(x rarr1)[f(x)]=

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

f(x) = [x-1] + {x)^{x}, x in (1,3), then f^-1(x) is- (where [.] denotes greatest integer function and (J denotes fractional part function)

Consider the function : f(x)={{:(x+2",", x ne 1), (0",", x =1.):} To find lim_(x to 1)f(x) .

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then