Home
Class 12
MATHS
lim(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2...

`lim_(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))-lim_(x->1/sqrt2^-) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))`

A

`sqrt2`

B

`2sqrt2`

C

`4 sqrt2`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(1)/(sqrt(2)^(+)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))-lim_(x rarr(1)/(sqrt(2)^(-)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))

lim _(x to ((1)/(sqrt2))^(+))(cos ^(-1) (2x sqrt(1- x ^(2))))/((x-(1)/(sqrt2)))- lim _(x to ((1)/(sqrt2))^(-))(cos ^(-1) (2x sqrt(1-x ^(2))))/((x- (1)/(sqrt2)))=

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

lim_(x->1/sqrt2) (x-cos(sin^-1 x))/(1-tan(sin^-1x))

int(x+sqrt(1-x^(2)))/(x.sqrt(1-x^(2)))dx=

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

lim_(x to 0) (sqrt(1- cos 2x))/(sqrt2x) =

Evaluate the following limit: (lim)_(x->1/(sqrt(2)))(cos^(-1)(2xsqrt(1-x^2)))/(x-1/(sqrt(2)))