Home
Class 12
MATHS
What is the value of a+b, if lim (xto 0)...

What is the value of `a+b, if lim _(xto 0) (sin (ax) -ln (e ^(x)cos x))/(x sin (bx))=1/2` ?

A

1

B

2

C

3

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{\sin(ax) - \ln(e^x \cos x)}{x \sin(bx)} = \frac{1}{2}, \] we will follow these steps: ### Step 1: Analyze the limit form As \(x\) approaches \(0\), both the numerator and denominator approach \(0\). This gives us a \(0/0\) indeterminate form, which allows us to apply L'Hôpital's rule. ### Step 2: Differentiate the numerator and denominator Using L'Hôpital's rule, we differentiate the numerator and the denominator with respect to \(x\): - **Numerator**: \[ \frac{d}{dx}[\sin(ax) - \ln(e^x \cos x)] = a \cos(ax) - \left(\frac{1}{e^x \cos x} \cdot (e^x \cos x - e^x \sin x)\right) \] Simplifying this gives: \[ a \cos(ax) - \frac{e^x \cos x - e^x \sin x}{e^x \cos x} = a \cos(ax) - 1 + \tan x. \] - **Denominator**: \[ \frac{d}{dx}[x \sin(bx)] = \sin(bx) + bx \cos(bx). \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{a \cos(ax) - 1 + \tan x}{\sin(bx) + bx \cos(bx)}. \] ### Step 4: Evaluate the limit at \(x = 0\) Substituting \(x = 0\): - The numerator becomes: \[ a \cdot 1 - 1 + 0 = a - 1. \] - The denominator becomes: \[ 0 + 0 = 0. \] This again gives us a \(0/0\) form, so we apply L'Hôpital's rule again. ### Step 5: Differentiate again Differentiating again: - **Numerator**: \[ \frac{d}{dx}[a \cos(ax) - 1 + \tan x] = -a^2 \sin(ax) + \sec^2 x. \] - **Denominator**: \[ \frac{d}{dx}[\sin(bx) + bx \cos(bx)] = b \cos(bx) + \cos(bx) - b x \sin(bx). \] ### Step 6: Evaluate the new limit Substituting \(x = 0\) again: - The numerator becomes: \[ -a^2 \cdot 0 + 1 = 1. \] - The denominator becomes: \[ b + 1. \] Thus, we have: \[ \lim_{x \to 0} \frac{1}{b + 1} = \frac{1}{2}. \] ### Step 7: Solve for \(b\) Setting the limit equal to \(\frac{1}{2}\): \[ \frac{1}{b + 1} = \frac{1}{2} \implies 2 = b + 1 \implies b = 1. \] ### Step 8: Find \(a\) From earlier steps, we found that for the limit to exist, we need \(a - 1 = 0\), which gives: \[ a = 1. \] ### Step 9: Calculate \(a + b\) Finally, we find: \[ a + b = 1 + 1 = 2. \] Thus, the value of \(a + b\) is \(\boxed{2}\).
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|26 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x-log(e^(x)cos x))/(x sin x)

What is the value of lim_(xto0) (sin|x|)/(x) ?

lim_ (x rarr0) (sin ax) / (bx)

What is the value of lim_(xto0) (cos(ax)-cos(bx))/(x^(2))

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim _(xto0) (sin (pi cos ^(2) (tan (sin x ))))/(x ^(2))=

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to