Home
Class 12
MATHS
Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x...

Let `f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2` If `lim_(x->2) [f(x)]` existsn the possible values a can take is/are (where [.] represents the grestest integer function)

A

2

B

`5/2`

C

3

D

`7/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|1 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (MATHCHING TYPE PROBLEMS)|1 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

f(x)={|x-2|+a^(2)-6a+9,x =2 If lim_(x rarr2)[f(x)] existsn the possible values a can take is/are (where [.] represents the grestest integer function)

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f(x)= [x ]^(2)+2 [x+1] -10 then complete solution of f(x)=0 where, [. ]represents the greatest integer function is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Evaluate :(lim)_(x rarr2^(+))([x-2])/(log(x-2)), where [.] represents the greatest integer function.

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

VIKAS GUPTA (BLACK BOOK)-LIMIT-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Which of the following limits does not exist ?(a) lim(x->oo) cosec^(-1...

    Text Solution

    |

  2. If f(x)=(lim)(nvecoo)(3/2+[cosx](sqrt(n^2+1)-sqrt(n^2-3n+1))) where ...

    Text Solution

    |

  3. Let f:R->R;f(x)={(-1)^n if x=1/(2^(2^n)), n=1,2,3.......... and 0 othe...

    Text Solution

    |

  4. If lim(x->a) f(x) = lim(x->a) [f(x)] ([.] denotes the greatest intege...

    Text Solution

    |

  5. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  6. lim(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)=-1/12 then

    Text Solution

    |

  7. If f (x) = lim ( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of...

    Text Solution

    |

  8. lim(n->oo)cos^2(pi(3sqrt(n^3+n^2+2n)-n)) where n is an integer,equals

    Text Solution

    |

  9. If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(s...

    Text Solution

    |

  10. Let f(x)={|x-2|+a^2-6a+9, x < 2 and 5-2x, x >= 2 If lim(x->2) [f(x)] e...

    Text Solution

    |

  11. A circular disk of unit radius is filled with a number of smaller circ...

    Text Solution

    |

  12. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  13. Let f (x)= [{:(x+3,, -2 lt x lt 0),(4, x=0),(2x+5,, 0 lt x lt 1):}, t...

    Text Solution

    |

  14. A certain function f(x) has the property that f(3x)=alpha f(x) for all...

    Text Solution

    |

  15. A certain function f (x) has the property that f (3x)=alpha f (x) for ...

    Text Solution

    |

  16. Consider the limit lim (x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax)...

    Text Solution

    |

  17. Consider the limit lim (x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax)...

    Text Solution

    |

  18. Consider the limit lim (x to 0) (1)/(x ^(3))((1)/(sqrt(1+x))- ((1+ ax)...

    Text Solution

    |

  19. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  20. Ror the curve sin x+ sin y=1 lying in the first quadrant there exists ...

    Text Solution

    |