Home
Class 12
MATHS
Let ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(...

Let `ab=1,Delta=|{:(1+a^2-b^2, 2ab,-2b),(2ab,1-a^2+b^2, 2a),(2b,-2a,1-a^2-b^2):}|` then the minimum value of `Delta` is :

A

3

B

9

C

27

D

81

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix} \] where \( ab = 1 \). ### Step 1: Substitute \( b \) in terms of \( a \) Since \( ab = 1 \), we can express \( b \) as \( b = \frac{1}{a} \). ### Step 2: Substitute \( b \) in the determinant Now, we substitute \( b = \frac{1}{a} \) into the determinant: \[ \Delta = \begin{vmatrix} 1 + a^2 - \left(\frac{1}{a}\right)^2 & 2a\left(\frac{1}{a}\right) & -2\left(\frac{1}{a}\right) \\ 2a\left(\frac{1}{a}\right) & 1 - a^2 + \left(\frac{1}{a}\right)^2 & 2a \\ 2\left(\frac{1}{a}\right) & -2a & 1 - a^2 - \left(\frac{1}{a}\right)^2 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 + a^2 - \frac{1}{a^2} & 2 & -\frac{2}{a} \\ 2 & 1 - a^2 + \frac{1}{a^2} & 2a \\ \frac{2}{a} & -2a & 1 - a^2 - \frac{1}{a^2} \end{vmatrix} \] ### Step 3: Simplify the determinant Now we perform column operations to simplify the determinant. 1. **Column Operations**: - \( C_1 \leftarrow C_1 - \frac{2}{a} C_3 \) - \( C_2 \leftarrow C_2 + 2 C_3 \) After performing these operations, we get: \[ \Delta = \begin{vmatrix} 1 + a^2 - \frac{1}{a^2} + 2 & 0 & -\frac{2}{a} \\ 2 & 1 - a^2 + \frac{1}{a^2} + 2a & 2a \\ \frac{2}{a} & -2a & 1 - a^2 - \frac{1}{a^2} \end{vmatrix} \] ### Step 4: Calculate the determinant Now we can expand the determinant. The determinant can be calculated using the rule of Sarrus or cofactor expansion. After simplification, we find that: \[ \Delta = (1 + a^2 + \frac{1}{a^2})^3 \] ### Step 5: Find the minimum value of \( \Delta \) To find the minimum value of \( \Delta \), we need to minimize \( 1 + a^2 + \frac{1}{a^2} \). Using the AM-GM inequality: \[ 1 + a^2 + \frac{1}{a^2} \geq 3 \] The equality holds when \( a^2 = 1 \) (i.e., \( a = 1 \) or \( a = -1 \)). Thus, the minimum value of \( \Delta \) is: \[ \Delta_{\text{min}} = 3^3 = 27 \] ### Final Answer The minimum value of \( \Delta \) is \( \boxed{27} \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Find the value |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

(a^2+b^2+2ab)-(a^2+b^2-2ab)

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

|[2ab,a^2,b^2] , [a^2,b^2,2ab] , [b^2,2ab,a^2]|=-(a^3+b^3)^2

If a, b and c are distinct positive real numbers such that Delta_(1) = |(a,b,c),(b,c,a),(c,a,b)| and Delta_(2) = |(bc - a^2, ac -b^2, ab - c^2),(ac - b^2, ab - c^2, bc -a^2),(ab -c^2, bc - a^2, ac - b^2)| , then