Home
Class 12
MATHS
If the system of linear equations {:((...

If the system of linear equations
`{:((cos theta)x + (sin theta) y + cos theta=0),((sin theta)x+(cos theta)y + sin theta=0),((cos theta)x + (sin theta)y -cos theta=0):}`
is consistent , then the number of possible values of `theta, theta in [0,2pi]` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \(\theta\) for which the given system of linear equations is consistent. The equations are: 1. \((\cos \theta)x + (\sin \theta)y + \cos \theta = 0\) 2. \((\sin \theta)x + (\cos \theta)y + \sin \theta = 0\) 3. \((\cos \theta)x + (\sin \theta)y - \cos \theta = 0\) ### Step 1: Write the system in matrix form We can represent the system of equations in matrix form as follows: \[ \begin{bmatrix} \cos \theta & \sin \theta & 1 \\ \sin \theta & \cos \theta & 1 \\ \cos \theta & \sin \theta & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Find the determinant of the coefficient matrix For the system to be consistent, the determinant of the coefficient matrix must be zero. The determinant \(D\) of the matrix is given by: \[ D = \begin{vmatrix} \cos \theta & \sin \theta & 1 \\ \sin \theta & \cos \theta & 1 \\ \cos \theta & \sin \theta & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant We can use the formula for the determinant of a \(3 \times 3\) matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values from our matrix: \[ D = \cos \theta \left( \cos \theta \cdot (-1) - \sin \theta \cdot 1 \right) - \sin \theta \left( \sin \theta \cdot (-1) - \cos \theta \cdot 1 \right) + 1 \left( \sin \theta \cdot \sin \theta - \cos \theta \cdot \cos \theta \right) \] Calculating each term: 1. First term: \(-\cos^2 \theta - \sin \theta\) 2. Second term: \(\sin^2 \theta + \sin \theta \cos \theta\) 3. Third term: \(\sin^2 \theta - \cos^2 \theta\) Combining these gives: \[ D = -\cos^2 \theta - \sin \theta + \sin^2 \theta + \sin \theta \cos \theta + \sin^2 \theta - \cos^2 \theta \] ### Step 4: Simplify the determinant Combining like terms: \[ D = 2\sin^2 \theta - 2\cos^2 \theta + \sin \theta \cos \theta - \sin \theta \] Setting \(D = 0\) for consistency: \[ 2\sin^2 \theta - 2\cos^2 \theta + \sin \theta \cos \theta - \sin \theta = 0 \] ### Step 5: Factor the equation Factoring out common terms, we can rewrite it as: \[ 2(\sin^2 \theta - \cos^2 \theta) + \sin \theta (\cos \theta - 1) = 0 \] ### Step 6: Solve for \(\theta\) This gives us two cases to consider: 1. \(2(\sin^2 \theta - \cos^2 \theta) = 0\) leads to \(\sin^2 \theta = \cos^2 \theta\) or \(\tan^2 \theta = 1\), giving \(\theta = \frac{\pi}{4}, \frac{5\pi}{4}\). 2. \(\sin \theta (\cos \theta - 1) = 0\) gives \(\sin \theta = 0\) or \(\cos \theta = 1\), leading to \(\theta = 0, \pi, 2\pi\). ### Step 7: Count the unique solutions The possible values of \(\theta\) in the interval \([0, 2\pi]\) are: - From \(\tan^2 \theta = 1\): \(\frac{\pi}{4}, \frac{5\pi}{4}\) - From \(\sin \theta = 0\): \(0, \pi, 2\pi\) Thus, the unique values of \(\theta\) are: - \(0\) - \(\frac{\pi}{4}\) - \(\pi\) - \(\frac{5\pi}{4}\) - \(2\pi\) ### Conclusion The total number of unique values of \(\theta\) in the interval \([0, 2\pi]\) is **5**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|23 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If (sin theta)/(x)=(cos theta)/(y) then sin theta-cos theta

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is

If 5 sin theta-4 cos theta=0, 0^@ < theta<90^@ , then the value of (5sin theta-2 cos theta)/(5sin theta+3 cos theta) is:

Solve the equation 3-2cos theta-4sin theta-cos2 theta+sin2 theta=0

If x sin^(3)theta+y cos^(3)theta=sin theta cos theta and x sin theta=y cos theta Find the value of x^(2)+y^(2)

y=(1+sin theta+cos theta)/(1+sin theta-cos theta), show that (dy)/(dx)+(1)/(1-cos theta)=0