Home
Class 12
MATHS
Let t1,t2,t3 be the three distinct point...

Let `t_1,t_2,t_3` be the three distinct points on circle |t|=1. if `theta_1,theta_2` and `theta_3` be the arguments of `t_1,t_2,t_3` respectively then `cos(theta_1- theta_2) + cos (theta_2-theta_3)+ cos (theta_3-theta_1)`

A

`ge -3/2`

B

`le-3/2`

C

`ge 3/2`

D

`le 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \] where \( t_1, t_2, t_3 \) are points on the unit circle, and \( \theta_1, \theta_2, \theta_3 \) are their respective arguments. ### Step 1: Understanding the Geometry Since \( t_1, t_2, t_3 \) are distinct points on the unit circle, we can represent them in terms of their angles \( \theta_1, \theta_2, \theta_3 \). The angles will be spaced around the circle. ### Step 2: Considering Equidistant Points To simplify our calculations, we can consider the case where the points are equidistant on the circle. For three points on the circle, the angles can be taken as: \[ \theta_1 = 0, \quad \theta_2 = \frac{2\pi}{3}, \quad \theta_3 = \frac{4\pi}{3} \] This gives us three points that are equally spaced, each separated by an angle of \( \frac{2\pi}{3} \). ### Step 3: Calculating the Cosine Differences Now we can compute the cosine differences: 1. \( \cos(\theta_1 - \theta_2) = \cos(0 - \frac{2\pi}{3}) = \cos(-\frac{2\pi}{3}) = -\frac{1}{2} \) 2. \( \cos(\theta_2 - \theta_3) = \cos(\frac{2\pi}{3} - \frac{4\pi}{3}) = \cos(-\frac{2\pi}{3}) = -\frac{1}{2} \) 3. \( \cos(\theta_3 - \theta_1) = \cos(\frac{4\pi}{3} - 0) = \cos(\frac{4\pi}{3}) = -\frac{1}{2} \) ### Step 4: Summing the Results Now we sum these results: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) = -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{3}{2} \] ### Conclusion Thus, the value of the expression is: \[ \boxed{-\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

cos theta cos2 theta cos3 theta=(1)/(4)

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta

If tan theta_(1).tantheta_(2)=k , then: (cos(theta_(1)-theta_(2))/(cos(theta_(1)+theta_(2)))=

If 0lt theta_2 lt theta_1 lt pi/4, cos(theta_1+theta_2)=3/5 and cos(theta_1-theta_2)=4/5 then sin2theta_1=

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

sin theta+sin2 theta+sin3 theta=1+cos theta+cos2 theta

If the line vec(OR) makes angles theta_(1),theta_(2),theta_(3) with the planes XOY, YOZ, ZOX respectively , then cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3) is equal to