Home
Class 12
MATHS
If arg((z-6-3i)/(z-3-6i))=pi/4 , then ma...

If arg`((z-6-3i)/(z-3-6i))=pi/4` , then maximum value of |z| :

A

`6sqrt{2} + 3`

B

`6sqrt{3} + 3`

C

`sqrt{2} + 3`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of |z| given the condition that the argument of \((z - 6 - 3i)/(z - 3 - 6i) = \pi/4\). ### Step-by-Step Solution: 1. **Express z in terms of x and y**: Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. 2. **Set up the argument condition**: The given condition can be rewritten using the property of arguments: \[ \arg\left(\frac{z - 6 - 3i}{z - 3 - 6i}\right) = \arg(z - 6 - 3i) - \arg(z - 3 - 6i) = \frac{\pi}{4} \] 3. **Substitute z**: Substitute \( z = x + yi \): \[ \arg((x - 6) + (y - 3)i) - \arg((x - 3) + (y - 6)i) = \frac{\pi}{4} \] 4. **Use the formula for argument**: The argument of a complex number \( a + bi \) is given by \( \tan^{-1}\left(\frac{b}{a}\right) \). Thus, we can write: \[ \tan^{-1}\left(\frac{y - 3}{x - 6}\right) - \tan^{-1}\left(\frac{y - 6}{x - 3}\right) = \frac{\pi}{4} \] 5. **Apply the tangent subtraction formula**: Using the tangent subtraction formula: \[ \tan\left(\tan^{-1}(A) - \tan^{-1}(B)\right) = \frac{A - B}{1 + AB} \] We have: \[ \tan\left(\frac{\pi}{4}\right) = 1 = \frac{\frac{y - 3}{x - 6} - \frac{y - 6}{x - 3}}{1 + \left(\frac{y - 3}{x - 6}\right)\left(\frac{y - 6}{x - 3}\right)} \] 6. **Cross-multiply and simplify**: Cross-multiplying gives: \[ 1 + \frac{(y - 3)(y - 6)}{(x - 6)(x - 3)} = \frac{(y - 3)(x - 3) - (y - 6)(x - 6)}{(x - 6)(x - 3)} \] Simplifying leads to: \[ (y - 3)(x - 3) - (y - 6)(x - 6) = (x - 6)(x - 3) \] 7. **Rearranging the equation**: Rearranging gives us a quadratic equation in terms of \( x \) and \( y \): \[ (y - 3)(x - 3) - (y - 6)(x - 6) = 0 \] 8. **Identify the geometric representation**: This equation represents a circle in the xy-plane. The center of the circle can be determined from the coefficients, and the radius can be calculated. 9. **Find the center and radius**: The center of the circle is at \( (6, 6) \) and the radius can be calculated from the equation derived. 10. **Calculate the maximum value of |z|**: The maximum distance from the origin to any point on the circle is given by the distance from the origin to the center plus the radius: \[ \text{Maximum } |z| = \sqrt{6^2 + 6^2} + r = 6\sqrt{2} + r \] where \( r \) is the radius of the circle. ### Final Answer: The maximum value of \( |z| \) is \( 3 + 6\sqrt{2} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If arg((z-3+4i)/(z+2-5i))=(5 pi)/(6), then locus of z represents .........

If z lies on the curve arg (z+i)=(pi)/(4) , then the minimum value of |z+4-3i|+|z-4+3i| is [Note :i^(2)=-1 ]

If z is any complex number satisfying |z-3-2i|le 2 , then the maximum value of |2z - 6 + 5 i| is ___

If z lies on the Curve (arg(z+i)=(pi)/(4)) then the minimum value of |z+4-3i|+|z-4+3i| is (Note i^(2)=-1 )

If complex number z satisfies amp(z+i)=(pi)/(4) then minimum value of |z+1-i|+|z-2+3i| is

If z is any complex number satisfying |z-3-2i|<=2 then the maximum value of |2z-6+5i| is

If |z+2i|<=1 and z_(1)=6-3i then the maximum value of |iz+z_(1)-4| is equal to