Home
Class 12
MATHS
Let z be a complex number satisfying 1/2...

Let z be a complex number satisfying `1/2 le |z| le 4` , then sum of greatest and least values of `|z+1/z|` is :

A

`65/4`

B

`65/16`

C

`17/4`

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the greatest and least values of \( |z + \frac{1}{z}| \) given that \( \frac{1}{2} \leq |z| \leq 4 \). ### Step 1: Represent \( z \) Let \( z = re^{i\theta} \), where \( r = |z| \) and \( \theta \) is the argument of \( z \). Since \( \frac{1}{2} \leq r \leq 4 \), we will analyze the expression \( |z + \frac{1}{z}| \). ### Step 2: Calculate \( |z + \frac{1}{z}| \) We can express \( |z + \frac{1}{z}| \) as follows: \[ |z + \frac{1}{z}| = |re^{i\theta} + \frac{1}{re^{i\theta}}| = |re^{i\theta} + \frac{1}{r} e^{-i\theta}| \] This simplifies to: \[ |z + \frac{1}{z}| = |r \cos \theta + \frac{1}{r} \cos \theta + i\left(r \sin \theta - \frac{1}{r} \sin \theta\right)| \] \[ = |(r + \frac{1}{r}) \cos \theta + i(r - \frac{1}{r}) \sin \theta| \] ### Step 3: Use the modulus formula Using the modulus formula, we have: \[ |z + \frac{1}{z}| = \sqrt{((r + \frac{1}{r}) \cos \theta)^2 + ((r - \frac{1}{r}) \sin \theta)^2} \] Expanding this gives: \[ = \sqrt{(r^2 + 2 + \frac{1}{r^2}) \cos^2 \theta + (r^2 - 2 + \frac{1}{r^2}) \sin^2 \theta} \] \[ = \sqrt{(r^2 + \frac{1}{r^2}) + 2\cos^2 \theta - 2\sin^2 \theta} \] \[ = \sqrt{(r^2 + \frac{1}{r^2}) + 2\cos(2\theta)} \] ### Step 4: Analyze the expression The term \( 2\cos(2\theta) \) varies between -2 and 2. Thus, we can write: \[ |z + \frac{1}{z}| = \sqrt{(r^2 + \frac{1}{r^2}) + 2\cos(2\theta)} \] The minimum value occurs when \( \cos(2\theta) = -1 \) and the maximum value occurs when \( \cos(2\theta) = 1 \). ### Step 5: Find minimum and maximum values 1. **Minimum Value**: \[ |z + \frac{1}{z}|_{\text{min}} = \sqrt{(r^2 + \frac{1}{r^2}) - 2} = \sqrt{(r - \frac{1}{r})^2} \] This equals \( |r - \frac{1}{r}| \). 2. **Maximum Value**: \[ |z + \frac{1}{z}|_{\text{max}} = \sqrt{(r^2 + \frac{1}{r^2}) + 2} = \sqrt{(r + \frac{1}{r})^2} \] This equals \( |r + \frac{1}{r}| \). ### Step 6: Evaluate for boundaries of \( r \) - For \( r = \frac{1}{2} \): - Minimum: \( |r - \frac{1}{r}| = |\frac{1}{2} - 2| = \frac{3}{2} \) - Maximum: \( |r + \frac{1}{r}| = |\frac{1}{2} + 2| = \frac{5}{2} \) - For \( r = 4 \): - Minimum: \( |r - \frac{1}{r}| = |4 - \frac{1}{4}| = \frac{15}{4} \) - Maximum: \( |r + \frac{1}{r}| = |4 + \frac{1}{4}| = \frac{17}{4} \) ### Step 7: Find the overall minimum and maximum values - The overall minimum value of \( |z + \frac{1}{z}| \) is \( \frac{3}{2} \). - The overall maximum value of \( |z + \frac{1}{z}| \) is \( \frac{17}{4} \). ### Step 8: Sum of greatest and least values Finally, we sum the greatest and least values: \[ \text{Sum} = \frac{3}{2} + \frac{17}{4} = \frac{6}{4} + \frac{17}{4} = \frac{23}{4} \] Thus, the answer is: \[ \frac{23}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying |z+16|=4|z+1| . Then

If z be a complex number satisfying |z-4+8i|=4 , then the least and the greatest value of |z+2| are respectively (where i=sqrt(-i) )

If z a complex number satisfying |z^(3)+z^(-3)|le2 , then the maximum possible value of |z+z^(-1)| is -

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

If z is any complex number satisfying |z-3-2i|le 2 , then the maximum value of |2z - 6 + 5 i| is ___

If z is a complex number satisfying ∣ z + 16 ∣ = 4 | z+1 | , then the minimum value of | z | is