Home
Class 12
MATHS
If Z=(7+i)/(3+4i) , then find Z^14....

If `Z=(7+i)/(3+4i)` , then find `Z^14`.

A

`2^7`

B

`(-2)^7`

C

`(2^7) i`

D

`(-2^7) i`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( Z^{14} \) for \( Z = \frac{7+i}{3+4i} \), we will follow these steps: ### Step 1: Rationalize the denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ Z = \frac{7+i}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{(7+i)(3-4i)}{(3+4i)(3-4i)} \] ### Step 2: Calculate the denominator Using the formula \( (a+b)(a-b) = a^2 - b^2 \): \[ (3+4i)(3-4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] ### Step 3: Calculate the numerator Now we calculate the numerator: \[ (7+i)(3-4i) = 21 - 28i + 3i - 4i^2 = 21 - 25i + 4 = 25 - 25i \] ### Step 4: Combine the results Now we can write \( Z \): \[ Z = \frac{25 - 25i}{25} = 1 - i \] ### Step 5: Convert to polar form Next, we convert \( Z \) to polar form. The modulus \( r \) and argument \( \theta \) are calculated as follows: \[ r = |Z| = \sqrt{(1)^2 + (-1)^2} = \sqrt{2} \] \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] Thus, we can express \( Z \) in polar form: \[ Z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] ### Step 6: Find \( Z^{14} \) Using De Moivre's theorem: \[ Z^{14} = \left( \sqrt{2} \right)^{14} \left( \cos\left(14 \cdot -\frac{\pi}{4}\right) + i \sin\left(14 \cdot -\frac{\pi}{4}\right) \right) \] Calculating \( \left( \sqrt{2} \right)^{14} \): \[ \left( \sqrt{2} \right)^{14} = (2^{1/2})^{14} = 2^{7} = 128 \] Now calculate the angle: \[ 14 \cdot -\frac{\pi}{4} = -\frac{14\pi}{4} = -\frac{7\pi}{2} \] ### Step 7: Simplify the angle To simplify \( -\frac{7\pi}{2} \): \[ -\frac{7\pi}{2} = -3\pi - \frac{\pi}{2} = -3\pi + \frac{\pi}{2} = -\frac{6\pi}{2} + \frac{\pi}{2} = -\frac{5\pi}{2} \] This angle can be further simplified by adding \( 4\pi \): \[ -\frac{5\pi}{2} + 4\pi = -\frac{5\pi}{2} + \frac{8\pi}{2} = \frac{3\pi}{2} \] ### Step 8: Calculate \( Z^{14} \) Now substituting back into the expression for \( Z^{14} \): \[ Z^{14} = 128 \left( \cos\left(\frac{3\pi}{2}\right) + i \sin\left(\frac{3\pi}{2}\right) \right) \] Using the values: \[ \cos\left(\frac{3\pi}{2}\right) = 0, \quad \sin\left(\frac{3\pi}{2}\right) = -1 \] Thus: \[ Z^{14} = 128(0 - i) = -128i \] ### Final Answer \[ Z^{14} = -128i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|10 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If z=(1-i)^(6)+(1-i) , then find the modulus of z (i.e., |z|) and multiplicative inverse of z (i.e., z^(-1) ).

If z=3+4i, then find |z| and z^(-1) .

if z= (3-4i)/((4-2i)(1+i) then find Re(z).

If |z-(4 + 3i) |=1, then find the complex number z for each of the following cases: (i) |z| is least (ii) |z| is greatest (iii) arg(z) is least (iv) arg(z) is greatest

(i) If z=3+4i, then find modulus of z i.e., |z|. (ii) If z=4+3i, then find modulus of z i.e., |z|.

if z_(1)=2+3i, z_(2)=1-iand z_(3) = 3+ 4i ,then find z_(1)z_(2) +z_(3)

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

Let I Arg((z-8i)/(z+6))=pmpi/2 II: Re ((z-8i)/(z+6))=0 Show that locus of z in I or II lies on x^2+y^2+6^x – 8^y=0 Hence show that locus of z can also be represented by (z-8i)/(z+6)+(bar(z)-8i)/(barz+6)=0 Further if locus of z is expressed as |z + 3 – 4i| = R, then find R.