Home
Class 12
MATHS
Let 1/(a1+omega) + 1/(a2+omega)+1/(a3+om...

Let `1/(a_1+omega) + 1/(a_2+omega)+1/(a_3+omega)+ … . + 1/(a_n+omega)=i`
where `a_1,a_2,a_3` …. `a_n in R` and `omega` is imaginary cube root of unity , then evaluate `sum_(r=1)^(n)(2a_r-1)/(a_r^2-a_r+1)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1} \] given that \[ \frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \cdots + \frac{1}{a_n + \omega} = i \] where \( \omega \) is the imaginary cube root of unity. ### Step-by-step Solution: 1. **Understanding the properties of \( \omega \)**: The imaginary cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \] and \[ \omega^2 = e^{-2\pi i / 3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \] We also know that: \[ \omega + \omega^2 = -1 \quad \text{and} \quad \omega \cdot \omega^2 = 1 \] 2. **Rewriting the given sum**: We can rewrite each term in the sum: \[ \frac{1}{a_r + \omega} = \frac{1}{a_r + \omega} \cdot \frac{a_r + \omega^2}{a_r + \omega^2} = \frac{a_r + \omega^2}{(a_r + \omega)(a_r + \omega^2)} \] The denominator simplifies to: \[ (a_r + \omega)(a_r + \omega^2) = a_r^2 + a_r(\omega + \omega^2) + \omega \cdot \omega^2 = a_r^2 - a_r + 1 \] Therefore, we have: \[ \frac{1}{a_r + \omega} = \frac{a_r + \omega^2}{a_r^2 - a_r + 1} \] 3. **Summing the rewritten terms**: Thus, the sum becomes: \[ \sum_{r=1}^{n} \frac{a_r + \omega^2}{a_r^2 - a_r + 1} = i \] 4. **Separating real and imaginary parts**: Substitute \( \omega^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \): \[ \sum_{r=1}^{n} \frac{a_r - \frac{1}{2} - \frac{\sqrt{3}}{2}i}{a_r^2 - a_r + 1} = i \] This can be separated into real and imaginary parts: \[ \sum_{r=1}^{n} \frac{a_r - \frac{1}{2}}{a_r^2 - a_r + 1} + i \sum_{r=1}^{n} \frac{-\frac{\sqrt{3}}{2}}{a_r^2 - a_r + 1} = i \] 5. **Setting the real part to zero**: The real part must equal zero: \[ \sum_{r=1}^{n} \frac{a_r - \frac{1}{2}}{a_r^2 - a_r + 1} = 0 \] 6. **Relating to the desired sum**: Now, we can express the desired sum: \[ \sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1} = 2 \sum_{r=1}^{n} \frac{a_r - \frac{1}{2}}{a_r^2 - a_r + 1} = 2 \cdot 0 = 0 \] ### Final Answer: Thus, the value of the sum is: \[ \sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|9 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If (1)/(a+omega)+(1)/(b+omega)+(1)/(c+omega)+(1)/(d+omega)=(1)/(omega) where a,b,c,d in R and omega is cube root of unity then show that sum(1)/(a^(2)-a+1)=1

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If (a_2 a_3)/(a_1 a_4) = (a_2 + a_3)/(a_1 + a_4) = 3 ((a_2 - a_3)/(a_1 - a_4)) then a_1, a_2, a_3, a_4 are in

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).