Home
Class 12
MATHS
Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)]...

Let matrix `A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28`, then `(adj A) A` equals :

A

`[(lambda+1,0,0),(0,lambda+1,0),(0,0,lambda+1)]`

B

`[(lambda,0,0),(0,lambda,0),(0,0,lambda)]`

C

`[(lambda^(2),0,0),(0,lambda^(2),0),(0,0,lambda^(2))]`

D

`[(lambda+2,0,0),(0,lambda+2,0),(0,0,lambda+2)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|5 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

[" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; if "xyz=2 lambda" and "8x+4y+3z=lambda+28," then "(adj A)" A equals: "],[[" (A) "[[lambda+1,0,0],[0,lambda+1,0],[0,0,lambda+1]]," (B) "[[lambda,0,0],[0,lambda,0],[0,0,lambda]]],[" (C) "[[lambda^(2),0,0],[0,lambda^(2),0],[0,0,lambda^(2)]]," (D) "[[lambda+2,0,0],[0,lambda+2,0],[0,0,lambda+2]]]]

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8x + 4y + 3z = 20, then A(adjA) is equal to

[" Let "A" be a square matrix "],[" where "],[A=[[x,3,2],[1,y,4],[2,2,z]]" ,"xyz=60,8x+4y+3z=:],[" ,then "^(A)(adjA)" is equal to "]

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] where x,y, z in N . If det. (adj. (adj. A)) =2^(8)*3^(4) then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.]

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] , where x, y, z in N . If |adj(adj (adj(adjA)))|=4^(8).5^(16) , then the number of such matrices A is equal to (where, |M| represents determinant of a matrix M)

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

If (x+y)^(2)=2(x^(2)+y^(2)) and (xy+lambda)^(2)=4,lambda>0, then lambda is equal to