Home
Class 12
MATHS
The value of [ ( 2009! + 2006!)/(2008! ...

The value of ` [ ( 2009! + 2006!)/(2008! + 2007!)] ` =
(` [ *] ` denotes greatest integer function.)

A

2009

B

2008

C

2007

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left\lfloor \frac{2009! + 2006!}{2008! + 2007!} \right\rfloor\), we can simplify the fraction step by step. ### Step 1: Factor out the common terms We start by factoring out \(2006!\) from the numerator and \(2007!\) from the denominator. \[ \frac{2009! + 2006!}{2008! + 2007!} = \frac{2006!(2009 \times 2008 \times 2007 + 1)}{2007!(2008 + 1)} \] ### Step 2: Rewrite the denominator We know that \(2007! = 2007 \times 2006!\), so we can rewrite the denominator: \[ = \frac{2006!(2009 \times 2008 \times 2007 + 1)}{2007 \times 2006!(2008 + 1)} \] ### Step 3: Cancel out \(2006!\) Now, we can cancel \(2006!\) from the numerator and denominator: \[ = \frac{2009 \times 2008 \times 2007 + 1}{2007 \times (2008 + 1)} \] ### Step 4: Simplify the expression This simplifies to: \[ = \frac{2009 \times 2008 \times 2007 + 1}{2007 \times 2009} \] ### Step 5: Divide the numerator by the denominator Now we can divide the numerator by the denominator: \[ = \frac{2008 \times 2007}{2007} + \frac{1}{2007 \times 2009} \] This simplifies to: \[ = 2008 + \frac{1}{2007 \times 2009} \] ### Step 6: Evaluate the greatest integer function Now we need to find the greatest integer function of the expression: \[ \left\lfloor 2008 + \frac{1}{2007 \times 2009} \right\rfloor \] Since \(\frac{1}{2007 \times 2009}\) is a very small positive number, the value of \(2008 + \frac{1}{2007 \times 2009}\) will be slightly greater than \(2008\) but less than \(2009\). Thus, the greatest integer function will yield: \[ \left\lfloor 2008 + \text{(a small positive number)} \right\rfloor = 2008 \] ### Final Answer Therefore, the final answer is: \[ \boxed{2008} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • PERMUTATION AND COMBINATIONS

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|3 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise -5 : Subjective Type problems|12 Videos

Similar Questions

Explore conceptually related problems

The value of [ ( 2009! + 2006!)/(2008! + 2007!)] is K . Then value of K/1004 ( [ *] denotes greatest integer function.)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

draw the graph of f(x)=x+[x.] denotes greatest integer function.

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

The period of 6x-[6x] is (where [ ] denotes the greatest integer function)

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is