Home
Class 12
MATHS
If (1+x)^(2010)=C(0)+C(1)x+C(2)x^(2)+ ……...

If `(1+x)^(2010)=C_(0)+C_(1)x+C_(2)x^(2)+ …….+C_(2010) x^(2010)` then the sum of series `C_(2)+C_(5)+C_(8)+ ……… +C_(2009)` equals to :

A

`(1)/(2)(2^(2010)-1)`

B

`(1)/(3) (2^(2010)-1)`

C

`(1)/(2) (2^(2009)-1)`

D

`(1)/(3)(2^(2009)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the series \( C_2 + C_5 + C_8 + \ldots + C_{2009} \) from the binomial expansion of \( (1+x)^{2010} \), we can follow these steps: ### Step 1: Understand the Binomial Expansion The binomial expansion of \( (1+x)^{2010} \) is given by: \[ (1+x)^{2010} = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_{2010} x^{2010} \] where \( C_k = \binom{2010}{k} \). ### Step 2: Multiply the Expansion by \( x \) To isolate the coefficients \( C_2, C_5, C_8, \ldots \), we can multiply the entire expansion by \( x \): \[ x(1+x)^{2010} = C_0 x + C_1 x^2 + C_2 x^3 + C_3 x^4 + \ldots + C_{2010} x^{2011} \] ### Step 3: Substitute Roots of Unity To extract the coefficients \( C_2, C_5, C_8, \ldots \) systematically, we can use the roots of unity. Let \( \omega = e^{2\pi i / 3} \) be a primitive cube root of unity. We will evaluate the expression at \( x = 1 \), \( x = \omega \), and \( x = \omega^2 \). ### Step 4: Evaluate at \( x = 1 \) Substituting \( x = 1 \): \[ 1(1+1)^{2010} = 2^{2010} = C_0 + C_1 + C_2 + C_3 + \ldots + C_{2010} \] ### Step 5: Evaluate at \( x = \omega \) Substituting \( x = \omega \): \[ \omega(1+\omega)^{2010} = \omega \cdot (1 + e^{2\pi i / 3})^{2010} = \omega \cdot (0)^{2010} = 0 \] This gives: \[ C_0 \omega + C_1 \omega^2 + C_2 \omega^3 + C_3 \omega^4 + \ldots = 0 \] ### Step 6: Evaluate at \( x = \omega^2 \) Substituting \( x = \omega^2 \): \[ \omega^2(1+\omega^2)^{2010} = \omega^2 \cdot (1 + e^{-2\pi i / 3})^{2010} = \omega^2 \cdot (0)^{2010} = 0 \] This gives: \[ C_0 \omega^2 + C_1 \omega + C_2 \omega^2 + C_3 \omega^3 + \ldots = 0 \] ### Step 7: Combine the Results Now we have three equations: 1. \( 2^{2010} = C_0 + C_1 + C_2 + C_3 + \ldots \) 2. \( 0 = C_0 \omega + C_1 \omega^2 + C_2 \cdot 1 + C_3 \omega + \ldots \) 3. \( 0 = C_0 \omega^2 + C_1 \cdot 1 + C_2 \omega + C_3 \omega^2 + \ldots \) ### Step 8: Solve for the Desired Sum Adding these equations, we can isolate the terms corresponding to \( C_2, C_5, C_8, \ldots \): \[ C_2 + C_5 + C_8 + \ldots = \frac{1}{3} (2^{2010} - 1) \] ### Final Answer Thus, the sum \( C_2 + C_5 + C_8 + \ldots + C_{2009} \) equals: \[ \frac{1}{3} (2^{2010} - 1) \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK)|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r*s)C_(r)C_(s) is :

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

VIKAS GUPTA (BLACK BOOK)-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. If (1+x)^(2010)=C(0)+C(1)x+C(2)x^(2)+ …….+C(2010) x^(2010) then the su...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If sum(r=0)^(3n)a(r)(x-4)^(r )=sum(r=0)^(3n)A(r)(x-5)^(r ) and a( k)=1...

    Text Solution

    |

  5. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  6. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/223) +1 and for all n ge 3 let f(n) = C(n,0) a^(n-1) - C(n,...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisiors of the form 2^(p)*3^(q) (with p, q posit...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+ sum(r=1)^10 (3^r C(10,r) + r C(10,r))=2^10 (alpha 4^5+beta) whe...

    Text Solution

    |

  16. if Sn = C0C1 + C1C2 +...+ C(n-1)Cn and S(n+1)/Sn = 15/4 then n is

    Text Solution

    |