Home
Class 12
PHYSICS
Moment of inertia of a solid cylinder of...

Moment of inertia of a solid cylinder of length L and diameter D about an axis passing through its centre of gravity and perpendicular to its geometric axis is

A

`M((D^(2))/(4)+(L^(2))/(12))`

B

`M((L^(2))/(16)+(D^(2))/(8))`

C

`M((D^(2))/(4)+(L^(2))/(6))`

D

`M((L^(2))/(12)+(D^(2))/(16))`

Text Solution

Verified by Experts

The correct Answer is:
D

Required moment of inertia,
`l=MM((L^(2))/(12)+(r^(2))/(4))=M((L^(2))/(12)+(D^(2))/(16))`
Promotional Banner

Topper's Solved these Questions

  • ROTATIONAL MOTION'

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PRACTICE EXERCISE (Exercise 2 (MISCELLANEOUS PROBLEMS))|47 Videos
  • ROTATIONAL MOTION'

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|35 Videos
  • ROTATIONAL MOTION'

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|35 Videos
  • REFRACTION OF LIGHT

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2|25 Videos
  • SCALARS AND VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (Miscellaneous Problems)|20 Videos

Similar Questions

Explore conceptually related problems

The moment of inertia of a solid cylinder of mass M, length 2 R and radius R about an axis passing through the centre of mass and perpendicular to the axis of the cylinder is I, and about an axis passing through one end of the cylinder and perpendicular to the axis of cylinder is I_2 then

The moment of inertia of a solid cylinder of mass M, length 2R and radius R about an axis passing through the centre of mass and perpendicular to the axis of the cylinder is I_(1) and about an axis passing through one end of the cylinder and perpendicular to the axis of cylinder is I_(2)

Moment of inertia of a cylinder of mass M, length L and radius R about an axis passing through its centre and perpendicular to the axis of the cylinder is I = M ((R^2)/4 + (L^2)/12) . If such a cylinder is to be made for a given mass of a material, the ratio L//R for it to have minimum possible I is :

Find the moment of inertia of a cylinder of mass M , radius R and length L about an axis passing through its centre and perpendicular to its symmetry axis. Do this by integrating an elemental disc along the length of the cylinder.

Radius of gyration of a uniform circular disc about an axis passing through its centre of gravity and perpendicular to its plane is

The moment of inertia of a solid cylinder about its own axis is the same as its moment of inertia about an axis passing through its centre of gravity and perpendicular to its length. The relation between its length L and radius R is :

Moment of inertia of a uniform rod of length L and mass M , about an axis passing through L//4 from one end and perpendicular to its length is

The moment of inertia of a square plate of mass 4kg and side 1m about an axis passing through its centre and perpendicular to its plane is

The moment of inertia of a rod of length l about an axis passing through its centre of mass and perpendicular to rod is I . The moment of inertia of hexagonal shape formed by six such rods, about an axis passing through its centre of mass and perpendicular to its plane will be

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-ROTATIONAL MOTION'-PRACTICE EXERCISE (Exercise 1 (TOPICAL PROBLEMS))
  1. Three identical thin rods each of length l and mass M are joined toget...

    Text Solution

    |

  2. Of the two eggs which have identical sizes, shapes and weights, one is...

    Text Solution

    |

  3. Moment of inertia of a solid cylinder of length L and diameter D about...

    Text Solution

    |

  4. Four spheres of diameter 2a and mass M are placed with their centres o...

    Text Solution

    |

  5. The ratio of the radii of gyration of a circular disc about a tangenti...

    Text Solution

    |

  6. Three point masses, each of mass m, are placed at the corners of an eq...

    Text Solution

    |

  7. A thin rod of length L and mass M is bent at the middle point O at an ...

    Text Solution

    |

  8. The diameter of a flywheel is increased by 1% . Increase in its moment...

    Text Solution

    |

  9. About which axis in the following figure the moment of inertia of the ...

    Text Solution

    |

  10. Moment of inertia of a thin rod of a mass M and length L about an axis...

    Text Solution

    |

  11. A mass is whirled in a circular path with a constant angular velocity ...

    Text Solution

    |

  12. A spherical solid ball of 1 kg mass and radius 3 cm is rotating about ...

    Text Solution

    |

  13. The torque of the force vecF=(2hati-3hatj+4hatk)N acting at the point ...

    Text Solution

    |

  14. A thin rod of mass m and length 2L is made to rotate about an axis pas...

    Text Solution

    |

  15. The instantaneous angular position of a point on a rotating wheel is g...

    Text Solution

    |

  16. If r is the distance between the Earth and the Sun. Then, angular mome...

    Text Solution

    |

  17. A battet dancer spins with 2.8 rps with her arms out stretched. When t...

    Text Solution

    |

  18. If the earth suddenly charges its radius x times the present value, th...

    Text Solution

    |

  19. A thin uniform rod AB of mass m and length l is hinged at one end to t...

    Text Solution

    |

  20. A particle of mass m is projected with a velocity v making an angle of...

    Text Solution

    |