Home
Class 11
MATHS
If (1+x)^n=C0+C1x+C2x^2++Cn x^n ,t h e n...

If `(1+x)^n=C_0+C_1x+C_2x^2++C_n x^n ,t h e nC_0C_2+C_1C_3+C_2C_4++C_(n-2)C_n=` `((2n)!)/((n !)^2)` b. `((2n)!)/((n-1)!(n+1)!)` c. `((2n)!)/((n-2)!(n+2)!)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , then C_0C_2+C_1C_3+C_2C_4+...+C_(n-2)C_n= a. ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , then C_0C_2+C_1C_3+C_2C_4+...+C_(n-2)C_n= a. ((2n)!)/((n !)^2) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((n-2)!(n+2)!) d. none of these

If quad (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n), then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+...+C_(n-2)C_(n)=((2n)!)/((n!)^(2)) b.((2n)!)/((n-1)!(n+1)!) c.((2n)!)/((n-2)!(n+2)!) d.none of these

If (1+x)^n = C_0 + C_1 x+ C_2 x^2 + ….....+ C_n x^n, then C_0+2. C_1 +3. C_2 +….+(n+1) . C_n=

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

If (1+x)^n=C_0+C_1x+C_2x^2+…..+C_nx^n .then show that C_1+2C_2+…. nC_n=n.2^(n-1) .

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+.....+C__(n-1)C_(n)=((2n)!)/((n+1)!(n-1)!)

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0