Home
Class 12
MATHS
tan(2tan^(-1)(1)/(5)-(pi)/(4))=...

tan(2tan^(-1)(1)/(5)-(pi)/(4))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan[2" tan"^(-1)(1)/(5)-(pi)/(4)] is equal to

The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

Find the value of tan(2"Tan"^(-1)(1/5)-(pi)/4)

The value of tan (2 tan^(-1). (1)/(5) - (pi)/(4) ) is equal to

tan[2.tan^(-1)(1/5)- pi/4]=

Prove that 2 tan^(-1) ((1)/(8)) + tan^(-1) ((1)/(7)) + 2 tan^(-1) ((1)/(5)) = (pi)/(4)

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)