Home
Class 12
MATHS
If (lim)(x->oo)(7^(k x)+8)/(7^(5x)+6)...

If `(lim)_(x->oo)(7^(k x)+8)/(7^(5x)+6)` does not exist then`' k '` can be

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(1+(K)/(x))^(x)=

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

(lim)_(x->oo)(sinx)/x equals a. 1 b . 0 c. oo d. does not exist

If lim_(x rarr oo)(x^(2)+3x+5)/(4x+1+x^(k)) exists then k=2(b)k 2(d)k>=2

lim_(x rarr oo)(4^(x+1)+5^(x))/(7^(x)+8^(x))=

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13)

lim_(x to oo) (1+k/x)^(mx) is equal to