Home
Class 12
MATHS
In triangle ABC,a(b^2+c^2)cos A+b(c^2+a...

In triangle `ABC,a(b^2+c^2)cos A+b(c^2+a^2)cosB+c(a^2+b^2)cosC=`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC , a (b^2 +c^2 ) cos A + b (c^2 +a^2 ) cos B + c(a^2 +b^2 ) cos C is equal to

In Delta ABC prove that a(b^2 + c^2) cosA + b(c^2 +a^2)cosB + c(a^2 + b^2) cosC = 3abc

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In triangle ABC//a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))(cosB+c(a^(2)+b^(2))cosC=

Show that in a triangle ABC, (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

If any triangle A B C , that: (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

for any triangleABC show that (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then