Home
Class 9
MATHS
cos^(2)x+cos^(2)2x+cos^(2)3x=1...

cos^(2)x+cos^(2)2x+cos^(2)3x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

Find the general solution of x,cos^(2)2x+cos^(2)3x=1

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

(cos^(2)x+cos x+2)/(cos^(2)x+cos x+1) find range.

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

Prove that cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)

The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

If f(x) = cos x cos 2x cos 2^2 x cos^(2^3) x .....cos 2^(n-1) x and n gt 1 then f^(1)(pi/2) is

If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n gt 1, then f'(pi/2) is

f(x)=sqrt(sin(cos x))+ln(-2cos^(2)x+3cos x+1)+e^(cos^(-1))((2sin x+1)/(2sqrt(2sin x)))