Home
Class 12
MATHS
If f(x)=[x](sin kx)^(p) is continuous fo...

If `f(x)=[x](sin kx)^(p)` is continuous for real x, then (where [.] represents the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

Let f(x)=-x^(2)+x+p , where p is a real number. If g(x)=[f(x)] and g(x) is discontinuous at x=(1)/(2) , then p - cannot be (where [.] represents the greatest integer function)

Let f(x)=-x^(2)+x+p , where p is a real number. If g(x)=[f(x)] and g(x) is discontinuous at x=(1)/(2) , then p - cannot be (where [.] represents the greatest integer function)

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

For the function f(x) = sin (pi[x]) xx cos^(-1)([x]) , choose the correct option. (where [.] represents the greatest integer function)

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)

Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1) , then (where [.] represents the greatest integer part function)