Home
Class 11
MATHS
" 12.Prove that: "tan^(-1)(x)/(x+1)-tan^...

" 12.Prove that: "tan^(-1)(x)/(x+1)-tan^(-1)(2x+1)=(3 pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

prove that: 2 tan ^(-1)x =(1)/(3) tan^(-1).(1)/( 7) = (pi)/(4)

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)