Home
Class 9
MATHS
" 39.If "x^(4)+y^(4)=83x^(2)y^(2)," then...

" 39.If "x^(4)+y^(4)=83x^(2)y^(2)," then prove that "log((x^(2)-y^(2))/(9))=log x+log y

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(4) + y^(4) = 83 x^(2)y^(2) then prove that log((x^(2) -y^(2))/9) = logx + logy.

if x^(2) + y^(2) = z^(2) then prove that log_(y)(z+x) + log_(y) (z-x)=2

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^(2)+y^(2)=6xy prove that 2log(x+y)=log x+log y+3log2