Home
Class 12
MATHS
If log2 (log8x)=log8(log2x), find the va...

` If log_2 (log_8x)=log_8(log_2x),` find the value of `(log_2x)^2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_2x+log_(4)x+log_(16)x=7/2 , find the value of x.

If log_(y)x+log_(x)y=7 then find the value of (log_(y)x)^(2)+(log_(x)y)^(2)

log_(2)(log_(3)(log_(2)x))=1 , then the value of x is :

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(e)2.log_(x)25 = log_(10)16.log_(e )10 , then find the value of x.