Home
Class 12
MATHS
If cosx+secx=-2 then for a positive inte...

If `cosx+secx=-2` then for a positive integer n, `cos^nx+sin^nx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if cosx+secx=(-2) then for a positive integer n cos^nx+sec^nx is

If sinx+cosecx=2 , then, for all n in N , the value of: sin^nx+cosec^nx= (a) 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

int nx^(n-1) cosx^n dx

If cosx+secx=2," then "cos^nx+sec^nx is equal to

lim_(x->0) (sin(nx)((a-n) nx-tan x))/ x2., when n is a non-zero positive integer, then a is equal to

Consider the following statements I.n(sin^(2)(67(1)/(2^(@)))-sin^(2)(22(1)/(2^(@))))>1 for all positive integers n>=2. II If x is any positive real number,then nx>1 for all positive integers n>=2. Which of the above statement(s) is/are correct?

The derivative of sin^nx is:

If A=((cosx,sinx),(-sinx,cosx)) then prove that A^n=((cosnx,sin nx),(-sin nx,cosnx) for all positive integers n.

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero positive integer, then a is equal to

lim_(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0 , when n is a non-zero positive integer, then a is equal to