Home
Class 11
MATHS
int (f'(x))/f(x) dx = log f (x) + c...

`int (f'(x))/f(x) dx = log f (x) + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (f^(')(x))/(f(x) log [f(x)]) dx =

int (f'(x))/(f(x)log f(x))dx=

int (f'(x))/f(x)dx =…….. a) [f(x)]^2/2+c b) logabs[f(x)]+c c) logabs[[f'(x)]/[f(x)]]+c d) logabs[f'(x)]+c

int (f'(x))/( f(x) log(f(x)))dx is equal to

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x

int(f'(x))/(f(x)log{f(x)})dx=

Match the following {:("List - I "," List II "),( (A) int (f^(1)(x))/(f(x)) dx = ,(1) 2 sqrt(f(x)) +c ),((B) int (f^(1)(x))/(sqrt(f(x))) dx= , (2) (2)/(3) (f(x))^(3//2) + c ),((C) int f^(1) (x) sqrt(f(x)) dx =, (3)" log | f(x)| + c"),((D) int f^(1) (x).(f(x))^(2) dx = , (4) (1)/(3) (f(x))^(3) + c ):} The correct match for list -I from List - II is

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?