Home
Class 12
MATHS
Given that log2 a=s, log4 b=5^2 and log(...

Given that `log_2 a=s, log_4 b=5^2 and log_(c^2) (8)=2/(s^3+1).` Write `log_2 (a^2b^3)/(c^4)` as a function of 's' `(a,b,c > 0,c!=1).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

Given that log_2a=lamda,log_4b=lamda^2 and log_(c^2)(8)=2/(lamda^3+1) write log_2((a^2b^5)/5) as a function of lamda,(a,b,cgt0,cne1) .

Given log_(2) a = s, log_(4) b = s^(2)" and " log_(c^(2)) (8) = 2/(s^(3) + 1) .Write log_(2). (a^(2)b^(2))/c^(4) as a function of 's' (a,b,c, gt 0, c ne 1) .

Prove that "log"_(a^(2))a " log"_(b^(2)) b" log_(c^(2))c = (1)/(8) .

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.