Home
Class 12
PHYSICS
A steel wire of length 20 cm and uniform...

A steel wire of length 20 cm and uniform cross-sectional area of `1 mm^(2)` is tied rigidly at both the ends at `45^(@)C`. If the temperature of the wire is decreased to `20^(@)C`, then the change in the tension of the wire will be
[Y for steel `= 2 xx 10^(11 Nm^(-2)`, the coefficient of linear expansion for steel `= 1.1 xx 10^(-5)//.^(@)CC^(-1)`]

A

22N

B

32N

C

55N

D

60N

Text Solution

Verified by Experts

The correct Answer is:
C

Coefficient of linear expansion `alpha = (dL)/(L(Delta T))`
`:. (Delta L)/(L) = alpha Delta T` …(1)
and `Y = (F.L)/(A.Delta L)`
`:. F = YA(Delta L)/(L) = Y A alpha Delta T` …from (1)
`:. F = 2 xx 10^(11) xx 1 xx 10^(-6) xx 1.1 xx 10^(-5) xx 25`
`:. F = 55 N`
Promotional Banner

Topper's Solved these Questions

  • ELASTICITY

    MARVEL PUBLICATION|Exercise Test Your Grasp - 5|15 Videos
  • CURRENT ELECTRICITY

    MARVEL PUBLICATION|Exercise MCQ|151 Videos
  • ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP - 16|30 Videos

Similar Questions

Explore conceptually related problems

A steel wire of length 20 cm and uniform cross-sectional 1 mm^(2) is tied rigidly at both the ends. The temperature of the wire is altered from 40^(@)C to 20^(@)C . Coefficient of linear expansion of steel is alpha = 1.1 xx 10^(-5) .^(@)C^(-1) and Y for steel is 2.0 xx 10^(11) Nm^(2) , the tension in the wire is

A steel wire of length 20 cm and uniform cross-section 1mm^(2) is tied rigidly at both the ends. If the temperature of the wire is altered from 40^(@)C to 20^(@)C , the change in tension. [Given coefficient of linear expansion of steel is 1.1xx10^(5) .^(@)C^(-1) and Young's modulus for steel is 2.0xx10^(11) Nm^(-2) ]

A steel wire of length 20 cm and unifrom crossection mm^(2) is tied rigidly at both the ends. If temperature of the wre is altered from 40^(@)C to 20^(@)C , calcutlate the change in tension. Given coeffeicient of linear expansion of steel is 1.1 xx 10^(-5) .^(@)C^(-1) and Young's modulus for steel is 2.0 xx 10^(11) Nm^(-2) .

A steel wire of uniform cross-sectional area 2mm^(2) is heated upto 50^(@) and clamped rigidly at two ends . If the temperature of wire falls to 30^(@) then change in tension in the wire will be , if coefficient of linear expansion of steel is 1.1 xx 10^(-5)//"^(@)C and young's modulus of elasticity of steel is 2 xx 10^(11) N//m^(2)

A steel wire of length 20 cm and cross - section 1 mm^(2) is tied rigidly at both ends at room temperature 30^(@)C . If the temperature falls 10^(@)C , what will be the change in tension ? Given that Y = 2xx10^(11)N//m^(2) and alpha = 1.1xx10^(-5)//^(@)C

A steel wire of length 1 m and mass 0.1 kg and having a uniform cross-sectional area of 10^(-6) m^(2) is rigidly fixed at both ends. The temperature of the wire is lowered by 20^(@)C . If the wire is vibrating in fundamental mode, find the frequency (in Hz). (Y_(steel)=2xx 10^(11) N//m^(2),alpha_(steel)=1.21 xx 10^(-5)//.^(@)C) .

A steel wire of length 1m , mass 0.1kg and uniform cross-sectional area 10^(-6)m^(2) is rigidly fixed at both ends. The temperature of the wire is lowered by 20^(@)C . If transverse calculate the frequency of the fundamental mode of vibration. Given for steel Y = 2 xx 10^(11)N//m^(2) alpha = 1.21 xx 10^(-5) per ^(@)C

A steel wire of cross sectional area 5xx10^(-7)m^(2) is tied between two rigid clamps. It is given that at 30^(@)C wire is just taut. If the temperature of wire is decreased to 10^(@)C , find the tension in the wire. Given that the coefficient of linear expansion of stees is 1.1xx10^(-5).^(@)C^(-1) and its Young's modulus is 2xx10^(11)N//m^(2)

A steel wire of corss sectional area 0.5mm^(2) is held between two rigid clamps so that it is just taut at 20^(@)C . Find the tension in the wire at 0^(@)C . Given that Young's Modulus of steel is Y_(st)=2.1xx10^(12) dynes/ cm^(2) and coefficient of linear expansion of steel is alpha_(st)=1.1xx10^(-5).^(@)C^(-1)

A uniform steel wire of cross-sectional area 0.20mm^(2) is held fixed by clamping its two ends. If wire is cooled from 100^(@)C to 0^(@)C , find (a) temperature strain (b) temperature stress (c) extra force exerted by each clamp on the wire. Young's modulus of steel =2xx10^(11)N//m^(2) , coefficient of linear expansion of steel =1.2xx10^(-5)//^(@)C .